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Numerical self-consistent-field method to solve the Kohn-Sham equations
in confined many-electron atoms
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A method to solve the Kohn-Sham equations numerically in confined many electron atoms is presented. The
method combines a very efficient matrix approach to locate approximate orbital eigenvalues with a shooting
method to integrate the radial equations, and an extrapolation to further refine the spin-orbital energies. The
confinement is imposed on the atom by requiring that the electron density vanishes for distances greater than
or equal to a confinement radil%, . The algorithm is tested with the confined hydrogen atom. The role of
local and nonlocal exchange-only functionals in confined many-electron atoms is analyzed and compared with
Hartree-Fock result§S1063-651X98)14808-Q

PACS numbgs): 02.70—c, 31.15.Ew, 31.15.Ne, 31.15.Fx

I. INTRODUCTION fining radius. Using the same methodology, electron correla-
tion was included by performing configuration interaction
Density functional theoryDFT) has become a very im- (Cl) calculations[22]. Unfortunately, due to the intrinsic
portant tool to study the electronic structure of atoms, mol-computational difficulties of the Cl method, Ludeand Gre-
ecules and extended systefiis-4]. From the practical point gory only reported results for two electrons atoms.
of view, the Kohn-Sham methdd] is the most successful ~ On the other hand, Boeyef4] solved the Hartree-Fock-
variant inside DFT, since it has been largely impelled by theSlater equations, modifying the Herman-Skillman c§26]
resources of current technology and the design of nevin order to incorporate a cutoff function like Ludgnbut
exchange-correlation functionals. The strategy to solve thaith a different functional form. This allowed Boeyens to
differential equations that arise in this theory depends on thebtain the electronic structure of confined atoms over the
boundary conditions imposed on the system. For example, iwhole Periodic Table.
atoms and molecules, the electronic density is built such that The main objective of this work is to present a methodol-
it vanishes at large distances. On the other hand, in the studygy that allows one to solve the spin-polarized Kohn-Sham
of solids it is important to use the translation symmetry thatequations for atoms, imposing Dirchlet's boundary condi-
the system exhibits in order to impose periodic conditions ortions. To properly compare the results of the proposed ap-
the electronic density. proach with the results reported by Lu@deand Boeyens,
Up to now, few efforts have been made in trying to imple-only exchange functionals are considered in the present
ment another type of boundary condition for the solution ofwork.
the Kohn-Sham equations. In particular, under Dirichlet's This work is organized as follows. In Sec. Il, a brief de-
boundary conditions the electronic density cancels at an ascription of Kohn-Sham theory, and the numerical approach
bitrary distance and not exclusively in the infinite, so confin-to solve these equations subjected to Dirichlet's boundary
ing an atom or a molecule. These boundary conditions can beonditions, are presented. To show the reliability of the al-
used to simulate the effect of high pressure in the electronigorithm proposed, in Sec. llI results for the hydrogen atom
structure of atoms or molecules, and, thus, to analyze thi a spherical box are presented, and they are compared with
equation of state under extreme conditions. previous works. Confinement effects on several atomic prop-
Imposing these boundary conditions on atoms is not newerties of many-electron atoms using an exchange-only for-
A great amount of work related to the hydrogen af@s20]  malism are presented and discussed in Sec. IV. Conclusions
under these conditions exists, and fewer authors have studi@de contained in Sec. V.
the helium aton{16,17,21,22 To the authors’ knowledge,
there are only two papers dealing with the variational solu- !l THEORETICAL AND NUMERICAL APPROACH
tion of the electronic structure of many-electron atoms under i . ; 3 )
confinement. One of these is related vv_ith the Hartree—Foclﬁor\l/Xthrlg sgigir?g(ljagie%irli)i;-:—z[ilr}é Thoeh?uﬁzgg(ri;a?afgnﬁ:
(HF) solution[23], and the other one with the Kohn-Sham units)
[24] solution of confined many-electron atoms.
In order to carry out the study at the HF level, Luden Eyg p®, pPl=TJ{#7} ]+ I p%r)+pP(r)]
[23] used Slater-type orbitals within the formalism of
Roothan and Baguf25]. He imposed the confinement by « @
multiplying the basis functions by a cutoff function such that TEdp ’pﬁ]+f drp“(r)+p#0)Jo(r),
the wave function cancels at a given distance. This method-
. ; : S (@)
ology was applied for atoms of the first row in the Periodic
Table, and centers its attention on the behavior of the totadubject to the orthonormality constraint for the e’} of
and orbital energies of these atoms as a function of the corkS spin orbitals. In Eq(1), the first term
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occ It should be noted that, due to the spherical average, KS spin
T = > > fdr ¢7* (1 (—3V?)$7(r) (2) orbitals are labeled by the quantum numbarand|, and
o=ap i thus, they are degeneratenm i.e., the multiplet structure is
o . . not considered in this work.
corresponds to the kinetic energy of noninteracting electrons Now, confinement is introduced by requiring that the total

with the same (Bale'ctron densif(r) of the fully interacting o a¢tron density vanishes at the boundaries of the spherical
systemJ[p®+ p"] is the classical electron-electron Coulom- g, that surround the atomic species, that is,
bic interaction,E,J p%,p#] is the exchange-correlation en-

ergy functional, and the last term corresponds to the contri- p(r) if r<R

bution due to the external potential(r). For atomic p(r)= _ ¢ (11)
systems,w(r) is given by — Z/r, whereZ is the nuclear 0 ifr=Rc,

charge. In KS theoryl,5], the total electron density(r) is

written as whereR. is the radius of the confining sphere. To guarantee

this condition, Eqs(10) are solved subjected to Dirichlet's
boundary conditions

p(n= 2 p°(r), (3)
e Y2(0)=Y5(Re) =0, 12)
where theo-spin densityp?(r) is given by
For free atoms, the conventional procedure to solve Egs.
occ (10) is by means of shooting methofi27]. These methods
p"(r)=2 |p7(N)|%  o=a,B, 4 require trial eigenvalues to start the inward and outward in-

! tegrations, and, by an iterative process, they are further re-
fined. In the case of free atoms, Clementi and Ro€ftfig
atomic tables or hydrogenic estimates are an excellent source
of trial values to start solving KS radial equations. However,
in confined atomic systems the one-electron levels change
very fast with confinement, differing substantially from the
asymptotic values. This latter fact constitutes a drawback in
solving the KS radial equations with well known conven-
tional programs such as Herman and Skillman’s. An alterna-
dive to this problem is to use an efficient method to locate
approximate eigenvalues, that afterwards are used in a shoot-
ing method to obtain the eigenfunctions and refine the eigen-
p(r") values._ _

UH(r):J' dr’'———. (6) In this work, the method proposed by Lindbdi29] to
[r—r’| obtain eigenvalues of one-dimensional quantum problems is
used. Lindberg’s approach is very fast in locating approxi-
For spherically symmetric external potentials, such asmate eigenvalues when Dirichlet's boundary conditions are
those in atomic species, KS spin orbitals can be expressed jmposed. This algorithm is based on finite differences, and,

with the sum running over all occupiegspin orbitals.
After minimizing Eg.(2.1) with the constraints, one ob-
tains KS equations

{—%V2+vH(r)+v§c[P“,pB]+v(f)}¢f’(r)=Ef’¢f'(r),( )
5

where vZ[p%pP] is the functional derivative of the
exchange-correlation energy functional with respect to th
o-spin density, and

terms of spherical harmonics”n(F) as being a globalmatrix) method, does not require trial eigen-
values as input. To apply the eigenvalue finding theorems,
(N =R%(1)Ym(T), (7)  two conditions must be satisfied) the differential equations

have to be expressed as
whereRy (r) are the radial parts that are solutions of the KS

radial equations d?y;
FJF[M—V(X)]YFO, (13
Ld?Ry 1dRY S — ® X
55— T g tuenlr =€ .
2 drz 1 odr e e where{y;} and{\;} are the sets of eigenfunctions and eigen-

_ . ~values, respectively, and(x) is a known function of the
In this later expressiomgy(r) corresponds to the spherical independent variablex. (i) Equation (13) has to be dis-

average of the effective potential, cretized in an equally spaced mesh. For atomic systems, the
nature of the external potential strongly suggests the use of a
" I(1+1) " 4 dense mesh in the nuclear vicinity and a sparse mesh in the

ver(r)= or2 +"H(r)J”’xc(r)_?- © asymptotic region. Trying to comply with the second re-

quirement mentioned above, several transformations have

By transforming Eq(8) in the usual manner, i.e., defining been attempted to write KS radial equations in the form dic-

i — DO ; ; tated by Eq.(13) and, at the same time, producing a radial
r)=rR7,(r), KS radial equations take the form .
Yni(r) (") g mesh that is dense close to the nucleus, but these efforts have

42y been unsuccessful. Even though this drawback is relevant for
Yni +2[ €= vT(r)]y%=0. (10) free or almost free atoms, when the confining radius is small,
dr? moUe " an equally spaced mesh is appropriate.
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TABLE I. Orbital energies of the confined hydrogen atom for two confinements and several values of the
grid step ). All quantities are in atomic units.

R.=2.0
h 1s 2s 2p 3d
0.020 -0.12498315 3.32721121 1.57595683 3.32741401
0.010 —0.12499579 3.32743467 1.57600330 3.32748537
0.005 —0.12499895 3.32749053 1.57601491 3.32750321
Extrapolated —0.12500000 3.32750919 1.57601879 3.32750917
Ref.[19] —0.12500000 3.32750916 1.57601879 -
R.=8.0
0.020 —0.49996260 —0.08473741 —0.10445054 0.04605796
0.010 —0.49997197 —0.08473839 —0.10445019 0.04605818
0.005 —0.49997432 —0.08473864 —0.10445010 0.04605823
Extrapolated —0.49997510 —0.08473872 —0.10445007 0.04605825
Ref.[19] —0.49997510 —0.08473872 —0.10445007 0.04605825

Using the variablex=2Zr, KS radial equations can be method was faster than inverse iteration. The shooting
written as method used in the present work relies on the three-term
recurrence relation

d?yp
dle +[ N~ ver(X)]ym=0, (14) yo(i+1)==y5(—D+yn(H{2-h?F()},
where i=12,... N—-1, a7
o with
€nl
Ai=25 (19 i o .
27 YD) =Ym(Xj) =ym(x=jh) (18
and and
1 I(+1 1 F(i)=NS—0vZ(j). 19
OB o) SO0, (19 )= hn vl ) 19

To use the recurrence relation it is necessary to impose

Discretizing Eq.(14) in an equally spaced mesh compris- the boundary condition
ing N elements, each of length= x./N = 2ZR./N, Lind-
berg’s theorems can now be applied to locate the eigenvalues Yni(0)=yp(x=0)=0, (20
efficiently. Since Lindberg’s method is based on Numerov’s . .
discretization[30], the error in the eigenvalues i¢. How- ~ and assign a value tgy(1)=yy(x=h). An alternative to
ever, for Coulombic potentials the error i€ [31]. Thus a obtain thl§ value is to use a power series expansion to know
shooting method based on central differences was used t§€ behavior near the nuclei, as used by Sle&8} or Froese-
integrate the differential equations and further refine the eiFischer[27]. Another way is to propose thgf,(1)=h, due
genvalues. Again, the error in this methoch&[32]. Origi-  to the fact that Eq(14) is a linear differential equatiof81].
nally Lindberg used inverse iteration to find the eigenfunc-The eigenfunction is obtained when the eigenvalie is
tions, but in several tests it was found that the shootinguch thaty?,(N)=0. Finally, each eigenfunction is normal-

TABLE Il. Dependence on the ste(h) of the expectation valueg ~1) and(r?) for the lowest lying
orbitals of the hydrogen atom in a spherical box of radis-2. All quantities are in atomic units.

(r (r%)
h 1s 2s 2p 1s 2s 2p
0.020 1.53515887 1.64630145 0.97234256 0.87482700 1.33207073 1.40566596
0.010 1.53516100 1.64627797 0.97234310 0.87482580 1.33208553 1.40566534
0.005 1.53516153 1.64627210 0.97234324 0.87482549  1.33208923 1.40566519

Extrapolated 1.53516169 1.64627016 0.97234328 0.87482539  1.33209043 1.40566515
Ref.[19] 153516171 1.64627014 0.97234328 0.87482539 1.3320904 1.405663
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FIG. 1. Orbital energies for the hydrogen atom in a spherical FIG. 2. Exchange-only density functional and Hartree-Fock or-
box. bital energies for the ground state of the helium atom in a spherical

box.

ized using a numerical integration based on the composed
Simpson rulg32], requiring an odd number of points in the reported in the literature. The extrapolated values obtained
mesh. using the results for these steps is also reported. As it can be
To avoid the problem of having meshes with an unman-seen, the extrapolated values are in almost complete agree-
ageable number of points, a Richardson’s extrapolatiofnent with those reported in Ref19]. As expected, coarse
scheme was implement¢81,32. In this scheme, solutions meshesli=0.02) provide results that deviate more from the
are calculated for several stegs, (h,, . .. hyo, and eigen- “exact” extrapolated values. These results validate the use
values and eigenfunctions are extrapolatedh$00. Experi-  of Richardson’s extrapolation scheme with stéps-0.02,
ence shows that three stefids=3) with h,=0.02 and two h,=h;/2=0.01, andh;=h,/4=0.005 to calculate very ac-
successive bisections of this value are enough to achieveurate orbital energies of confined atoms. It is worth to note
nine digit accuracy in the eigenvalues. that for negative eigenvalues the “exact” value—{0) is a
It is worth mentioning that several aspects of the originallower bound while the situation is reversed whep-0. A
Herman-Skillman code were preserved. For instance, theimilar behavior has been observed in anharmonic potentials
Thomas-Fermi potential is used to start self-consistency, anid4] and is a consequence of the nonvariational nature of the
the mixing scheme and criteria to achieve self-consistencfinite-differences method.
are basically the same as those used by Herman and Skill- To test the quality of the wave functions, in Table Il the
man. Integration subroutines were replaced by quadraturds ') and(r?) expectation values of thesl 2s, and 2
based in the composed Simpson rule. In this way, three selbrbitals confined in a spherical shell of radis=2 are
consistent calculations are done, storing the eigenfunctiongresented. In general, these results are in good agreement
and eigenvalues that are further used in Richardson’s ewith those reported by Aquinid 9], but care should be taken
trapolation to obtain the final solution. in this comparison since these latter values were obtained by
numerical differentiation of the eigenvalues, while those pre-
sented in this work were calculated by numerical integration.
The behavior of several states as a function of confine-
The confined hydrogen atom has been extensively studieshent is depicted in Fig. 1. These eigenvalues were calculated
with different analytical and numerical techniques, and thusising Richardson’s three-point extrapolation with=0.02,
is a good testing ground for the approach proposed in Sec. Ihnd the bisection procedure mentioned above. A first salient
To show the sensibility of the method to the grid step, infeature is that confinement breaks the existing accidental de-
Table | the &, 2s, 2p, and 3 orbital eigenvalues corre- generacy of the free hydrogen atom. Furthermore, states with
sponding to three step values and two confining radii aréhe samen and differentl quantum numbers cross over,
reported and compared with an accurate calculation recenthyhile those with the sameé never cross. Another known
feature of the highly confined hydrogen atom, that is repro-
TABLE lll. Total energy of the helium atom for several con- duced by the method proposed here, is that the level ordering
finements, using two exchange functionals. All quantities are ingf the confined atom is noticeably different from that corre-

Ill. HYDROGEN ATOM IN A SPHERICAL BOX

atomic units. sponding to the free atom. Again, all these findings are in
complete agreement with previous woiks18|.

R LSDA BECKE HF? P 9 P fies18]
1.0 1.354 1112 1.061 IV. MANY-ELECTRON ATOMS
2.0 —2.384 —2.542 —2.563 ) )
30 —2.682 —2.826 —2831 In this section, results for He, Ne, and Na neutral atoms
4.0 —2.718 _2.859 —2.859 under confinement are presented within an exchange-only
5.0 2723 2863 2861 formalism. The role played by the structure of the exchange
6.0 2794 5863 2862 functional is analyzed by performing two types of calcula-

8Referencd 23].

tions. The local spin density approximatidcSDA) [35] and
a semilocal or generalized gradient approximation using
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TABLE IV. Total energy of the neon atom for several confine- o
ments, using two exchange functionals. All quantities are in atomic ——son
units. e BECKE

—_ ——HF

R LSDA BECKE HF ;;

1.0 ~101.512 ~102.810 ~102.943 ;f’;

1.5 —122.041 —123.206 —123.310 ®

2.0 —126.079 —127.199 —127.231

2.5 —127.076 —128.182 —128.160

3.0 —127.357 —128.458 —128.415 A

35 —127.445 —128.545 —128.495 1 2 8 4

4.0 —127.474 —128.574 —128.523 Ra.u)

4.5 —127.485 —128.584 —128.547 FIG. 4. DifferenceseR— ¢° for the 25 orbital energy in the
*Referencd 23] neon atom, using exchange-only density functionals and Hartree-

Fock orbital energies.

Becke's exchange functiondBECKE) [36] were tested. All R.—, while for small confinements, these semilocal total

ca!culat|ons reporteq were done with t.he thre.e_— pomt eXtrapoénergies are larger that those corresponding to HF orbital
lation scheme described in Sec. Il using an initial step value

) : ; energies.
of 0.02. It is worth noting that for very large confinements To see the effect of confinement on the orbital energies,

the total number of mesh points is rather large. . L _
DFT total energies for the ground state of helium undera_nd o °°mp§‘re Yq\”th Luders result23], in F|gs. 3-5 the
ifferences e — ¢, °, where Ry=4.5, are depicted. From

confinement are presented and compared with HF calculéj— ; 0 '
tions in Table Ill. The behavior of the total energy of He asthese figures it is found that the core leveb] Is less sen-

a function of confinement is the same for all theoretical lev-Sitive to confinement than valence levelss(@nd 2p). Al-

els tested: there is a sharp increase beRww 3.0, and de- though DFT and HF orbital eigenvalues have a different
creases smoothly above this value. As it can be seen, LSDphyswal meaning, their behavior with respect to confinement

total energies are the greatest. These results reveal that déf-Similar.

sity inhomogeneities are important, becoming more signifi- Recently, Boeyens presented Hartree-Fock-Slater results
cant at small confinements. Becke’s exchange functional wadlor the confl.nled sodium atom. As pointed out in Sec. |, this
parametrized to reproduce HF data of noble gases, and tifd/thor modified Herman and Skillman's code, and used a
results presented here for helium show that this functionafutoff function to incorporate the confining conditions. Thus,

provides essentially the same results as HF, even when tHeSDA calculations for t_he ground state of sodium were car-
radius of the spherical shell is small. ried out to compare with results reported by Boeyens. The

The behavior of DFT and HF orbital energies for the 1 ground state orbital energies of the confined sodium atom are
level of helium is depicted in Fig. 2. LSDA and BECKE depipted in Fig. 6. According_to the observation made in the
behave in a very similar fashion for the whole range of con{Prévious paragraph, concerning the effect of confinement on
finements considered, and they differ considerably from HFvalence and core levels, it is seen that tis¢4 orbital is far

Results for the ground state total energies of neon ar8'0re sensitive to confinement than the(d), 2s(«), and
presented in Table IV. Similarly to helium, LSDA total en- 2P(a) orbitals. This behavior is in contradiction with that
ergies are considerably greater than HF; discrepancies aRéesented by Boeyens, where thel8vel is almost insensi-
larger at small confinements. Semilocal total energies artive to confinement. Trying to resolve this discrepancy, sev-
closer to those obtained with the HF method. Notice that, foral tests were done with different steps, but no important
both atoms, Becke’s total energies are smaller than HF foghanges from those depicted in Fig. 6 were found. Thus, it is

40 40
——LSDA ——LSDA
o BEOKE L e BECKE
or —~—HF _ % —~—HF
3 3
5 8
T 20 F '?&
EEI o o
w“e wN
10 O
, . A .
1 2 3 4 1 2 3 4
R(a.u.) R(a.u.)
FIG. 3. DifferenceseR— e for the 1s orbital energy in the FIG. 5. Differencese”— ¢'® for the 2p orbital energy in the

neon atom, using exchange-only density functionals and Hartregieon atom, using exchange-only density functionals and Hartree-
Fock orbital energies. Fock orbital energies.
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= ergies to be used as input in a shooting method to find the
radial functions and further refine the orbital energies. To
have a manageable number of mesh points, a three-point
® extrapolation scheme is used.
The methodology here presented was tested by applying it
10 to the very well known problem of the hydrogen atom in a
spherical box. Results are in full agreement with previous
® works, showing that the method can be reliably used to study
atoms under confinement.
Many-electron atoms under confinement have been stud-
- : ‘ ; ! ‘ ; s ied by solving Kohn-Sham equations in an exchange-only
] A 3 4 formalism. Two theoretical levels were considered: the local
Ra.u) spin density approximation and semiloggeneralized gra-

FIG. 6. Alpha spin-orbital energies for the ground state of so-dient approximationBecke’s functional. Although the total

dium atom in a spherical box as a function of confinement. The lef€Nergies obtained with Becke's functional are closer to

scale corresponds tsa) orbital energy and the right scale to the Hartree-Fock values, the orbital energies differ for every
2s(@), 2p(a), and 3(a) orbital energies. confinement radius. However, the behavior of the orbital en-

ergies as a function of confinement is similar for both

concluded that Boeyens’ methodology is in error, or that thd1@rtree-Fock and density functional theory.

cutoff function proposed by this author does not represent Ext_ension of the metho_dology to include other functionals
correctly the confining conditions. is straightforward. In particular, the role of electron correla-

tion and self-interaction will be presented elsewhere.

20

Energy(a.u.)
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