
PHYSICAL REVIEW E SEPTEMBER 1998VOLUME 58, NUMBER 3
Numerical self-consistent-field method to solve the Kohn-Sham equations
in confined many-electron atoms

Jorge Garza, Rubicelia Vargas, and Alberto Vela
Departamento de Quı´mica, División de Ciencias Ba´sicas e Ingenierı´a, Universidad Auto´noma Metropolitana-Iztapalapa,

Apartado Postal 55-534, Me´xico Distrito Federal 09340, Mexico
~Received 4 December 1997!

A method to solve the Kohn-Sham equations numerically in confined many electron atoms is presented. The
method combines a very efficient matrix approach to locate approximate orbital eigenvalues with a shooting
method to integrate the radial equations, and an extrapolation to further refine the spin-orbital energies. The
confinement is imposed on the atom by requiring that the electron density vanishes for distances greater than
or equal to a confinement radiusRc . The algorithm is tested with the confined hydrogen atom. The role of
local and nonlocal exchange-only functionals in confined many-electron atoms is analyzed and compared with
Hartree-Fock results.@S1063-651X~98!14808-0#

PACS number~s!: 02.70.2c, 31.15.Ew, 31.15.Ne, 31.15.Fx
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I. INTRODUCTION

Density functional theory~DFT! has become a very im
portant tool to study the electronic structure of atoms, m
ecules and extended systems@1–4#. From the practical point
of view, the Kohn-Sham method@5# is the most successfu
variant inside DFT, since it has been largely impelled by
resources of current technology and the design of n
exchange-correlation functionals. The strategy to solve
differential equations that arise in this theory depends on
boundary conditions imposed on the system. For example
atoms and molecules, the electronic density is built such
it vanishes at large distances. On the other hand, in the s
of solids it is important to use the translation symmetry t
the system exhibits in order to impose periodic conditions
the electronic density.

Up to now, few efforts have been made in trying to imp
ment another type of boundary condition for the solution
the Kohn-Sham equations. In particular, under Dirichle
boundary conditions the electronic density cancels at an
bitrary distance and not exclusively in the infinite, so confi
ing an atom or a molecule. These boundary conditions ca
used to simulate the effect of high pressure in the electro
structure of atoms or molecules, and, thus, to analyze
equation of state under extreme conditions.

Imposing these boundary conditions on atoms is not n
A great amount of work related to the hydrogen atom@6–20#
under these conditions exists, and fewer authors have stu
the helium atom@16,17,21,22#. To the authors’ knowledge
there are only two papers dealing with the variational so
tion of the electronic structure of many-electron atoms un
confinement. One of these is related with the Hartree-F
~HF! solution @23#, and the other one with the Kohn-Sha
@24# solution of confined many-electron atoms.

In order to carry out the study at the HF level, Lude˜a
@23# used Slater-type orbitals within the formalism
Roothan and Bagus@25#. He imposed the confinement b
multiplying the basis functions by a cutoff function such th
the wave function cancels at a given distance. This meth
ology was applied for atoms of the first row in the Period
Table, and centers its attention on the behavior of the t
and orbital energies of these atoms as a function of the c
PRE 581063-651X/98/58~3!/3949~6!/$15.00
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fining radius. Using the same methodology, electron corre
tion was included by performing configuration interactio
~CI! calculations@22#. Unfortunately, due to the intrinsic
computational difficulties of the CI method, Luden˜a and Gre-
gory only reported results for two electrons atoms.

On the other hand, Boeyens@24# solved the Hartree-Fock
Slater equations, modifying the Herman-Skillman code@26#
in order to incorporate a cutoff function like Luden˜a, but
with a different functional form. This allowed Boeyens
obtain the electronic structure of confined atoms over
whole Periodic Table.

The main objective of this work is to present a method
ogy that allows one to solve the spin-polarized Kohn-Sh
equations for atoms, imposing Dirchlet’s boundary con
tions. To properly compare the results of the proposed
proach with the results reported by Luden˜a and Boeyens,
only exchange functionals are considered in the pres
work.

This work is organized as follows. In Sec. II, a brief d
scription of Kohn-Sham theory, and the numerical approa
to solve these equations subjected to Dirichlet’s bound
conditions, are presented. To show the reliability of the
gorithm proposed, in Sec. III results for the hydrogen at
in a spherical box are presented, and they are compared
previous works. Confinement effects on several atomic pr
erties of many-electron atoms using an exchange-only
malism are presented and discussed in Sec. IV. Conclus
are contained in Sec. V.

II. THEORETICAL AND NUMERICAL APPROACH

Within spin-polarized DFT@1#, Kohn-Sham~KS! equa-
tions are obtained by minimizing the functional~in atomic
units!

EKS@ra,rb#5Ts@$f i
s%#1J@ra~r !1rb~r !#

1Exc@ra,rb#1E dr @ra~r !1rb~r !#v~r !,

~1!

subject to the orthonormality constraint for the set$f i
s% of

KS spin orbitals. In Eq.~1!, the first term
3949 © 1998 The American Physical Society
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Ts@$f i
s%#5 (

s5a,b
(

i

occ E dr f i
s* ~r !~2 1

2 ¹2!f i
s~r ! ~2!

corresponds to the kinetic energy of noninteracting electr
with the same electron densityr(r ) of the fully interacting
system,J@ra1rb# is the classical electron-electron Coulom
bic interaction,Exc@ra,rb# is the exchange-correlation en
ergy functional, and the last term corresponds to the con
bution due to the external potentialv(r ). For atomic
systems,v(r ) is given by 2 Z/r , where Z is the nuclear
charge. In KS theory@1,5#, the total electron densityr(r ) is
written as

r~r !5 (
s5a,b

rs~r !, ~3!

where thes-spin densityrs(r ) is given by

rs~r !5(
i

occ

uf i
s~r !u2, s5a,b, ~4!

with the sum running over all occupieds-spin orbitals.
After minimizing Eq. ~2.1! with the constraints, one ob

tains KS equations

$2 1
2 ¹21vH~r !1vxc

s @ra,rb#1v~r !%f i
s~r !5e i

sf i
s~r !,

~5!

where vxc
s @ra,rb# is the functional derivative of the

exchange-correlation energy functional with respect to
s-spin density, and

vH~r !5E dr 8
r~r 8!

ur2r 8u
. ~6!

For spherically symmetric external potentials, such
those in atomic species, KS spin orbitals can be expresse
terms of spherical harmonicsYlm( r̂ ) as

fnlm
s ~r !5Rnl

s ~r !Ylm~ r̂ !, ~7!

whereRnl
s (r ) are the radial parts that are solutions of the K

radial equations

2
1

2

d2Rnl
s

dr2
2

1

r

dRnl
s

dr
1veff

s ~r !Rnl
s 5enl

s Rnl
s . ~8!

In this later expression,veff
s (r) corresponds to the spheric

average of the effective potential,

veff
s ~r !5

l ~ l 11!

2r 2
1vH~r !1vxc

s ~r !2
Z

r
. ~9!

By transforming Eq.~8! in the usual manner, i.e., definin
ynl

s (r )5rRnl
s (r ), KS radial equations take the form

2
d2ynl

s

dr2
12@enl

s 2veff
s ~r !#ynl

s 50. ~10!
s

i-

e

s
in

It should be noted that, due to the spherical average, KS
orbitals are labeled by the quantum numbersn and l, and
thus, they are degenerate inm, i.e., the multiplet structure is
not considered in this work.

Now, confinement is introduced by requiring that the to
electron density vanishes at the boundaries of the sphe
shell that surround the atomic species, that is,

r~r !5H r~r ! if r ,Rc

0 if r>Rc ,
~11!

whereRc is the radius of the confining sphere. To guaran
this condition, Eqs.~10! are solved subjected to Dirichlet’
boundary conditions

ynl
s ~0!5ynl

s ~Rc!50. ~12!

For free atoms, the conventional procedure to solve E
~10! is by means of shooting methods@27#. These methods
require trial eigenvalues to start the inward and outward
tegrations, and, by an iterative process, they are further
fined. In the case of free atoms, Clementi and Roetti’s@28#
atomic tables or hydrogenic estimates are an excellent so
of trial values to start solving KS radial equations. Howev
in confined atomic systems the one-electron levels cha
very fast with confinement, differing substantially from th
asymptotic values. This latter fact constitutes a drawback
solving the KS radial equations with well known conve
tional programs such as Herman and Skillman’s. An alter
tive to this problem is to use an efficient method to loca
approximate eigenvalues, that afterwards are used in a sh
ing method to obtain the eigenfunctions and refine the eig
values.

In this work, the method proposed by Lindberg@29# to
obtain eigenvalues of one-dimensional quantum problem
used. Lindberg’s approach is very fast in locating appro
mate eigenvalues when Dirichlet’s boundary conditions
imposed. This algorithm is based on finite differences, a
being a global~matrix! method, does not require trial eigen
values as input. To apply the eigenvalue finding theore
two conditions must be satisfied:~i! the differential equations
have to be expressed as

d2yi

dx2
1@l i2V~x!#yi50, ~13!

where$yi% and$l i% are the sets of eigenfunctions and eige
values, respectively, andV(x) is a known function of the
independent variablex. ~ii ! Equation ~13! has to be dis-
cretized in an equally spaced mesh. For atomic systems
nature of the external potential strongly suggests the use
dense mesh in the nuclear vicinity and a sparse mesh in
asymptotic region. Trying to comply with the second r
quirement mentioned above, several transformations h
been attempted to write KS radial equations in the form d
tated by Eq.~13! and, at the same time, producing a rad
mesh that is dense close to the nucleus, but these efforts
been unsuccessful. Even though this drawback is relevan
free or almost free atoms, when the confining radius is sm
an equally spaced mesh is appropriate.



of the

PRE 58 3951NUMERICAL SELF-CONSISTENT-FIELD METHOD TO . . .
TABLE I. Orbital energies of the confined hydrogen atom for two confinements and several values
grid step (h). All quantities are in atomic units.

Rc52.0
h 1s 2s 2p 3d

0.020 -0.12498315 3.32721121 1.57595683 3.32741401
0.010 20.12499579 3.32743467 1.57600330 3.32748537
0.005 20.12499895 3.32749053 1.57601491 3.32750321

Extrapolated 20.12500000 3.32750919 1.57601879 3.32750917
Ref. @19# 20.12500000 3.32750916 1.57601879 –

Rc58.0

0.020 20.49996260 20.08473741 20.10445054 0.04605796
0.010 20.49997197 20.08473839 20.10445019 0.04605818
0.005 20.49997432 20.08473864 20.10445010 0.04605823

Extrapolated 20.49997510 20.08473872 20.10445007 0.04605825
Ref. @19# 20.49997510 20.08473872 20.10445007 0.04605825
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Using the variablex52Zr, KS radial equations can b
written as

d2ynl
s

dx2
1@lnl

s 2veff
s ~x!#ynl

s 50, ~14!

where

lnl
s 5

enl
s

2Z2
~15!

and

veff
s ~x!52

1

x
1

l ~ l 11!

x2
1

1

2Z2
@vH~x!1vxc

s ~x!#. ~16!

Discretizing Eq.~14! in an equally spaced mesh compri
ing N elements, each of lengthh5 xc /N 5 2ZRc /N, Lind-
berg’s theorems can now be applied to locate the eigenva
efficiently. Since Lindberg’s method is based on Numero
discretization@30#, the error in the eigenvalues ish4. How-
ever, for Coulombic potentials the error ish2 @31#. Thus a
shooting method based on central differences was use
integrate the differential equations and further refine the
genvalues. Again, the error in this method ish2 @32#. Origi-
nally Lindberg used inverse iteration to find the eigenfun
tions, but in several tests it was found that the shoot
es
s

to
i-

-
g

method was faster than inverse iteration. The shoot
method used in the present work relies on the three-t
recurrence relation

ynl
s ~ j 11!52ynl

s ~ j 21!1ynl
s ~ j !$22h2Fnl

s ~ j !%,

j 51,2, . . . ,N21, ~17!

with

ynl
s ~ j !5ynl

s ~xj !5ynl
s ~x5 jh ! ~18!

and

Fnl
s ~ j !5lnl

s 2veff
s ~ j !. ~19!

To use the recurrence relation it is necessary to imp
the boundary condition

ynl
s ~0!5ynl

s ~x50!50, ~20!

and assign a value toynl
s (1)5ynl

s (x5h). An alternative to
obtain this value is to use a power series expansion to kn
the behavior near the nuclei, as used by Slater@33# or Froese-
Fischer@27#. Another way is to propose thatynl

s (1)5h, due
to the fact that Eq.~14! is a linear differential equation@31#.
The eigenfunction is obtained when the eigenvaluelnl

s is
such thatynl

s (N)50. Finally, each eigenfunction is norma
6596
6534
6519
6515
3

TABLE II. Dependence on the step(h) of the expectation valueŝr 21& and ^r 2& for the lowest lying
orbitals of the hydrogen atom in a spherical box of radiusRc52. All quantities are in atomic units.

^r 21& ^r 2&
h 1s 2s 2p 1s 2s 2p

0.020 1.53515887 1.64630145 0.97234256 0.87482700 1.33207073 1.4056
0.010 1.53516100 1.64627797 0.97234310 0.87482580 1.33208553 1.4056
0.005 1.53516153 1.64627210 0.97234324 0.87482549 1.33208923 1.4056

Extrapolated 1.53516169 1.64627016 0.97234328 0.87482539 1.33209043 1.4056
Ref. @19# 1.53516171 1.64627014 0.97234328 0.87482539 1.3320904 1.40566
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ized using a numerical integration based on the compo
Simpson rule@32#, requiring an odd number of points in th
mesh.

To avoid the problem of having meshes with an unm
ageable number of points, a Richardson’s extrapola
scheme was implemented@31,32#. In this scheme, solution
are calculated for several steps (h1 ,h2 , . . . ,hNs), and eigen-
values and eigenfunctions are extrapolated toh50. Experi-
ence shows that three steps~Ns53! with h150.02 and two
successive bisections of this value are enough to ach
nine digit accuracy in the eigenvalues.

It is worth mentioning that several aspects of the origi
Herman-Skillman code were preserved. For instance,
Thomas-Fermi potential is used to start self-consistency,
the mixing scheme and criteria to achieve self-consiste
are basically the same as those used by Herman and S
man. Integration subroutines were replaced by quadrat
based in the composed Simpson rule. In this way, three s
consistent calculations are done, storing the eigenfunct
and eigenvalues that are further used in Richardson’s
trapolation to obtain the final solution.

III. HYDROGEN ATOM IN A SPHERICAL BOX

The confined hydrogen atom has been extensively stu
with different analytical and numerical techniques, and th
is a good testing ground for the approach proposed in Sec
To show the sensibility of the method to the grid step,
Table I the 1s, 2s, 2p, and 3d orbital eigenvalues corre
sponding to three step values and two confining radii
reported and compared with an accurate calculation rece

FIG. 1. Orbital energies for the hydrogen atom in a spher
box.

TABLE III. Total energy of the helium atom for several con
finements, using two exchange functionals. All quantities are
atomic units.

Rc LSDA BECKE HFa

1.0 1.354 1.112 1.061
2.0 22.384 22.542 22.563
3.0 22.682 22.826 22.831
4.0 22.718 22.859 22.859
5.0 22.723 22.863 22.861
6.0 22.724 22.863 22.862

aReference@23#.
ed
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reported in the literature. The extrapolated values obtai
using the results for these steps is also reported. As it ca
seen, the extrapolated values are in almost complete ag
ment with those reported in Ref.@19#. As expected, coarse
meshes (h50.02) provide results that deviate more from t
‘‘exact’’ extrapolated values. These results validate the
of Richardson’s extrapolation scheme with stepsh150.02,
h25h1/250.01, andh35h1/450.005 to calculate very ac
curate orbital energies of confined atoms. It is worth to n
that for negative eigenvalues the ‘‘exact’’ value (h→0) is a
lower bound while the situation is reversed whene i.0. A
similar behavior has been observed in anharmonic poten
@34# and is a consequence of the nonvariational nature of
finite-differences method.

To test the quality of the wave functions, in Table II th
^r 21& and ^r 2& expectation values of the 1s, 2s, and 2p
orbitals confined in a spherical shell of radiusRc52 are
presented. In general, these results are in good agree
with those reported by Aquino@19#, but care should be take
in this comparison since these latter values were obtaine
numerical differentiation of the eigenvalues, while those p
sented in this work were calculated by numerical integrati

The behavior of several states as a function of confi
ment is depicted in Fig. 1. These eigenvalues were calcul
using Richardson’s three-point extrapolation withh150.02,
and the bisection procedure mentioned above. A first sal
feature is that confinement breaks the existing accidental
generacy of the free hydrogen atom. Furthermore, states
the samen and different l quantum numbers cross ove
while those with the samel never cross. Another known
feature of the highly confined hydrogen atom, that is rep
duced by the method proposed here, is that the level orde
of the confined atom is noticeably different from that corr
sponding to the free atom. Again, all these findings are
complete agreement with previous works@7,18#.

IV. MANY-ELECTRON ATOMS

In this section, results for He, Ne, and Na neutral ato
under confinement are presented within an exchange-
formalism. The role played by the structure of the exchan
functional is analyzed by performing two types of calcu
tions. The local spin density approximation~LSDA! @35# and
a semilocal or generalized gradient approximation us

l FIG. 2. Exchange-only density functional and Hartree-Fock
bital energies for the ground state of the helium atom in a spher
box.

n
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Becke’s exchange functional~BECKE! @36# were tested. All
calculations reported were done with the three-point extra
lation scheme described in Sec. III using an initial step va
of 0.02. It is worth noting that for very large confinemen
the total number of mesh points is rather large.

DFT total energies for the ground state of helium und
confinement are presented and compared with HF calc
tions in Table III. The behavior of the total energy of He
a function of confinement is the same for all theoretical le
els tested: there is a sharp increase belowRc53.0, and de-
creases smoothly above this value. As it can be seen, LS
total energies are the greatest. These results reveal that
sity inhomogeneities are important, becoming more sign
cant at small confinements. Becke’s exchange functional
parametrized to reproduce HF data of noble gases, and
results presented here for helium show that this functio
provides essentially the same results as HF, even when
radius of the spherical shell is small.

The behavior of DFT and HF orbital energies for thes
level of helium is depicted in Fig. 2. LSDA and BECK
behave in a very similar fashion for the whole range of co
finements considered, and they differ considerably from H

Results for the ground state total energies of neon
presented in Table IV. Similarly to helium, LSDA total en
ergies are considerably greater than HF; discrepancies
larger at small confinements. Semilocal total energies
closer to those obtained with the HF method. Notice that,
both atoms, Becke’s total energies are smaller than HF

FIG. 3. Differencese i
R2e i

4.5 for the 1s orbital energy in the
neon atom, using exchange-only density functionals and Hart
Fock orbital energies.

TABLE IV. Total energy of the neon atom for several confin
ments, using two exchange functionals. All quantities are in ato
units.

Rc LSDA BECKE HFa

1.0 2101.512 2102.810 2102.943
1.5 2122.041 2123.206 2123.310
2.0 2126.079 2127.199 2127.231
2.5 2127.076 2128.182 2128.160
3.0 2127.357 2128.458 2128.415
3.5 2127.445 2128.545 2128.495
4.0 2127.474 2128.574 2128.523
4.5 2127.485 2128.584 2128.547

aReference@23#.
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e
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Rc→`, while for small confinements, these semilocal to
energies are larger that those corresponding to HF orb
energies.

To see the effect of confinement on the orbital energ
and to compare with Luden˜a’s results@23#, in Figs. 3–5 the
differencese i

R2e i
R0 , where R054.5, are depicted. From

these figures it is found that the core level (1s) is less sen-
sitive to confinement than valence levels (2s and 2p). Al-
though DFT and HF orbital eigenvalues have a differe
physical meaning, their behavior with respect to confinem
is similar.

Recently, Boeyens presented Hartree-Fock-Slater res
for the confined sodium atom. As pointed out in Sec. I, t
author modified Herman and Skillman’s code, and use
cutoff function to incorporate the confining conditions. Thu
LSDA calculations for the ground state of sodium were c
ried out to compare with results reported by Boeyens. T
ground state orbital energies of the confined sodium atom
depicted in Fig. 6. According to the observation made in
previous paragraph, concerning the effect of confinemen
valence and core levels, it is seen that the 3s(a) orbital is far
more sensitive to confinement than the 1s(a), 2s(a), and
2p(a) orbitals. This behavior is in contradiction with tha
presented by Boeyens, where the 3s level is almost insensi-
tive to confinement. Trying to resolve this discrepancy, s
eral tests were done with different steps, but no import
changes from those depicted in Fig. 6 were found. Thus,

e-

FIG. 4. Differencese i
R2e i

4.5 for the 2s orbital energy in the
neon atom, using exchange-only density functionals and Hart
Fock orbital energies.

FIG. 5. Differencese i
R2e i

4.5 for the 2p orbital energy in the
neon atom, using exchange-only density functionals and Hart
Fock orbital energies.
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concluded that Boeyens’ methodology is in error, or that
cutoff function proposed by this author does not repres
correctly the confining conditions.

V. CONCLUSIONS

A method to solve spin-polarized Kohn-Sham equatio
for atomic systems confined within a spherical box has b
presented. Confinement is introduced via imposing
richlet’s boundary conditions. The method stems from a v
efficient matrix method that locates approximate orbital

FIG. 6. Alpha spin-orbital energies for the ground state of
dium atom in a spherical box as a function of confinement. The
scale corresponds to 1s(a) orbital energy and the right scale to th
2s(a), 2p(a), and 3s(a) orbital energies.
s

.

e
nt

s
n

i-
y
-

ergies to be used as input in a shooting method to find
radial functions and further refine the orbital energies.
have a manageable number of mesh points, a three-p
extrapolation scheme is used.

The methodology here presented was tested by applyin
to the very well known problem of the hydrogen atom in
spherical box. Results are in full agreement with previo
works, showing that the method can be reliably used to st
atoms under confinement.

Many-electron atoms under confinement have been s
ied by solving Kohn-Sham equations in an exchange-o
formalism. Two theoretical levels were considered: the lo
spin density approximation and semilocal~generalized gra-
dient approximation! Becke’s functional. Although the tota
energies obtained with Becke’s functional are closer
Hartree-Fock values, the orbital energies differ for eve
confinement radius. However, the behavior of the orbital
ergies as a function of confinement is similar for bo
Hartree-Fock and density functional theory.

Extension of the methodology to include other function
is straightforward. In particular, the role of electron corre
tion and self-interaction will be presented elsewhere.
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